
Lecture 37

Finite Difference Method, Yee
Algorithm

In this lecture, we will introduce one of the simplest methods to solve Maxwell’s equations
numerically. This is the finite-difference time-domain method first proposed by Yee [252] and
popularized by Taflove [253]. Because of its simplicity, a simple Maxwell’s equations solver can
be coded in one afternoon. Thus almost every physics or electrical engineering laboratory has
a home-grown version of the finite-difference time-domain solver. This method is the epitome
of that “simplicity rules.”1 Professor Hermann Haus at MIT used to say: find the simplest
method to do things. Complicated methods will be forgotten, but the simplest method will
prevail. This is also reminiscent of Einstein’s saying, “Everything should be made as simple
as possible, but no simpler!”

37.1 Finite-Difference Time-Domain Method

To obtain the transient (time-domain) solution of the wave equation for a more general,
inhomogeneous medium, a numerical method has to be used. The finite-difference time-
domain (FDTD) method, a numerical method, is particularly suitable for solving transient
problems. Compounded by rapid growth in computer speed, with its versatility, it has been
used with great success in solving many practical problems. This method is based on a simple
Yee algorithm [252] and has been vastly popularized by Taflove [253,254].

In the finite-difference method, continuous space-time is replaced with a discrete space-
time. Then, in the discrete space-time, partial differential equations are replaced with finite
difference equations. These finite difference equations are readily implemented on a digital
computer. Furthermore, an iterative or time-stepping scheme can be implemented without
having to solve large matrices, resulting in great savings in computer time. Moreover, the
matrix for the system of equations is never generated making this a matrix-free method: There
is no need to store the matrix system for matrix management as one writes this numerical

1“rule” is used as a verb.
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436 Electromagnetic Field Theory

solver. More recently, the development of parallel processor architectures in computers has
also further enhanced the efficiency of the finite-difference time-domain scheme [255].

The finite-difference method is also described in numerous works (see, for example, Potter
1973 [256]; Taflove 1988 [253]; Ames 2014 [257]; and Morton 2019 [258].

37.1.1 The Finite-Difference Approximation

Consider first a scalar wave equation of the form

1

c2(r)

∂2

∂t2
φ(r, t) = µ(r)∇ · µ−1(r)∇φ(r, t). (37.1.1)

The above equation appears in scalar acoustic waves or a 2D electromagnetic waves in inho-
mogeneous media [36,259].

To convert the above into a form that can be solved by a digital computer easily, first,
one needs to find finite-difference approximations to the time derivatives. Then, the time
derivative can be approximated in many ways. For example, a derivative can be approximated
by forward, backward, and central finite difference formulas [260] (see Figure 37.1).

Forward difference:
∂φ(r, t)

∂t
≈ φ(r, t+ ∆t)− φ(r, t)

∆t
, (37.1.2)

Backward difference:
∂φ(r, t)

∂t
≈ φ(r, t)− φ(r, t−∆t)

∆t
, (37.1.3)

Central difference:
∂φ(r, t)

∂t
≈
φ(r, t+ ∆t

2 )− φ(r, t− ∆t
2 )

∆t
, (37.1.4)
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Figure 37.1: Different finite-difference approximations for the time derivative. One can
eye-ball that the central difference formula is the best. This can be further confirmed by
a Taylor series analysis.

where ∆t is a small number. Of the three methods of approximating the time derivative, the
central-difference scheme is the best approximation, as is evident from Figure 37.1. The errors
in the forward and backward differences are O(∆t) (or first-order error) while the central-
difference approximation has an error O[(∆t)2] (or second-order error). This can be easily
verified by Taylor-series expanding the right-hand sides of (37.1.2) to (37.1.4).

Consequently, using the central-difference formula twice, we arrive at the approximation
for the second derivative as

∂2

∂t2
φ(r, t) ≈ ∂

∂t

[
φ(r, t+ ∆t

2 )− φ(r, t− ∆t
2 )

∆t

]
(37.1.5)

≈ φ(r, t+ ∆t)− 2φ(r, t) + φ(r, t−∆t)

(∆t)2
. (37.1.6)

Next, if the function φ(r, t) is indexed on discrete time steps on the t axis, such that for
t = l∆t, then φ(r, t) = φ(r, l∆t) = φl(r), where l is an integer is used to count the time steps.
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Using this notation, Equation (37.1.6) then becomes

∂2

∂t2
φ(r, t) ≈ φl+1(r)− 2φl(r) + φl−1(r)

(∆t)2
. (37.1.7)

37.1.2 Time Stepping or Time Marching

With this notation and approximations, (37.1.1) can be approximated by a time-stepping (or
time-marching) formula, namely,

φl+1(r) ∼= c2(r)(∆t)2µ(r)∇ · µ−1(r)∇φl(r) + 2φl(r)− φl−1(r). (37.1.8)

Therefore, given the knowledge of φ(r, t) at t = l∆t, or φl(r) and t = (l − 1)∆t, or φl−1(r)
for all r, one can deduce φ(r, t) at t = (l + 1)∆t, or φl+1(r) for all r. In other words, given
the initial values of φ(r, t) at, for example, t = 0 and t = ∆t, φ(r, t) can be deduced for all
subsequent times, provided that the time-stepping formula is stable.

At this point, the right-hand side of (37.1.8) involves the space derivatives. There exist
a plethora of ways to approximate and calculate the right-hand side of (37.1.8) numerically.
Here, we shall illustrate again the use of the finite-difference method to calculate the right-
hand side of (37.1.8). Before proceeding further, note that the space derivatives on the
right-hand side in cartesian coordinates are

µ(r)∇ · µ−1(r)∇φ(r) = µ
∂

∂x
µ−1 ∂

∂x
φ+ µ

∂

∂y
µ−1 ∂

∂y
φ+ µ

∂

∂z
µ−1 ∂

∂z
φ. (37.1.9)

Then, one can approximate, using central differencing that

∂

∂z
φ(x, y, z) ≈ 1

∆z

[
φ

(
x, y, z +

∆z

2

)
− φ

(
x, y, z − ∆z

2

)]
, (37.1.10)

Consequently, using central differencing two times,

∂

∂z
µ−1 ∂

∂z
φ(x, y, z) ≈ 1

(∆z)2

{
µ−1

(
z +

∆z

2

)
φ(x, y, z + ∆z)

−
[
µ−1

(
z +

∆z

2

)
+ µ−1

(
z − ∆z

2

)]
φ(x, y, z)

+µ−1

(
z − ∆z

2

)
φ(x, y, z −∆z)

}
. (37.1.11)

Furthermore, after denoting φ(x, y, z) = φm,n,p, µ(x, y, z) = µm,n,p, on a discretized grid
point at x = m∆x, y = n∆y, z = p∆z, we have (x, y, z) = (m∆x, n∆y, p∆z), and then

∂

∂z
µ−1 ∂

∂z
φ(x, y, z) ≈ 1

(∆z)2

[
µ−1
m,n,p+ 1

2

φm,n,p+1

−
(
µ−1
m,n,p+ 1

2

+ µ−1
m,n,p− 1

2

)
φm,n,p + µ−1

m,n,p− 1
2

φm,n,p−1

]
. (37.1.12)
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This cumbersome and laborious looking equation can be abbreviated if we define a central
difference operator as2

∂̄zφm =
1

∆z

(
φm+ 1

2
− φm− 1

2

)
(37.1.13)

Then the right-hand side of the (37.1.12) can be written succinctly as

∂

∂z
µ−1 ∂

∂z
φ(x, y, z) ≈ ∂̄zµm,n,p∂̄zφm,n,p (37.1.14)

With similar approximations to the other terms in (37.1.9), (37.1.8) is now compactly written
as

φl+1
m,n,p = (∆t)2c2m,n,pµm,n,p

[
∂̄xµm,n,p∂̄x + ∂̄yµm,n,p∂̄y + ∂̄zµm,n,p∂̄z

]
φm,n,p

+ 2φlm,n,p − φl−1
m,n,p. (37.1.15)

The above can be readily implemented on a computer for time stepping. Notice however,
that the use of central differencing results in the evaluation of medium property µ at half
grid points. This is inconvenient, as the introduction of material values at half grid points
increases computer memory used. Hence, it is customary to store the medium value at the
integer grid points for ease of book-keeping, and to deduce the values at half-grid points using
the following approximations

µm+ 1
2 ,n,p

' 1

2
(µm+1,n,p + µm,n,p), (37.1.16)

µm+ 1
2 ,n,p

+ µm− 1
2 ,n,p

' 2µm,n,p, (37.1.17)

and so on. Moreover, if µ is a smooth function of space, it is easy to show that the errors in
the above approximations are of second order by Taylor series expansions.

For a homogeneous medium, with ∆x = ∆y = ∆z = ∆s, namely, we assume the space
steps to be equal in all directions, (37.1.15) written explicitly becomes

φl+1
m,n,p =

(
∆t

∆s

)2

c2
[
φlm+1,n,p + φlm−1,n,p + φlm,n+1,p + φlm,n−1,p + φlm,n,p+1

+φlm,n,p−1 − 6φlm,n,p
]

+ 2φlm,n,p − φl−1
m,n,p. (37.1.18)

Notice then that with the central-difference approximation, the value of φl+1
m,n,p is dependent

only on φlm,n,p, and its nearest neighbors, φlm±1,n,p, φ
l
m,n±1,p, φ

l
m,n,p±1, and φl−1

m,n,p, its value
at the previous time step. Moreover, in the finite-difference scheme outlined above, no matrix
inversion is required at each time step. Such a scheme is also known as an explicit scheme.
The use of an explicit scheme is a major advantage of the finite-difference method compared
to the finite-element methods. Consequently, in order to update N grid points using (37.1.15)
or (37.1.18), O(N) multiplications are required for each time step. In comparison, O(N3)
multiplications are required to invert an N ×N full matrix, e.g., using Gaussian elimination.
The simplicity and efficiency of these finite-difference algorithms have made them vastly
popular.

2This is in the spirit of [261].
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37.1.3 Stability Analysis

The implementation of the finite-difference time-domain scheme using time-marching does
not always lead to a stable scheme. Hence, in order for the solution to converge, the time-
stepping scheme must at least be stable. Consequently, it is useful to find the condition
under which a numerical finite-difference scheme is stable. To do this, one performs the von
Neumann stability analysis (von Neumann 1943 [262]) on Equation (37.1.18). We will assume
the medium to be homogeneous to simplify the analysis.

As shown in the previous lecture in Section 35.1, a point source gives rise to a spherical
wave that can be expanded in terms of sum of plane waves in different directions. It also
implies that any wave emerging from sources can be expanded in terms of sum of plane waves.
This is the spirit of the spectral expansion method. So if a scheme is not stable for a plane
wave, it would not be stable for any wave. Consequently, to perform the stability analysis,
we assume a propagating plane wave (or mode) as a trial solution (or the eigen-solution of
the problem)

φ(x, y, z, t) = A(t)eikxx+ikyy+ikzz, (37.1.19)

In discretized form, by letting ∆x = ∆y = ∆z = ∆s, it is just

φlm,n,p = Aleikxm∆s+ikyn∆s+ikzp∆s. (37.1.20)

We can imagine that Al = A0e
−iωl∆t, so that the above is actually a Fourier plane wave mode

in the frequency domain. Using (37.1.20), it is easy to show that for the x space derivative,

φlm+1,n,p − 2φlm,n,p + φlm−1,n,p = 2[cos(kx∆s)− 1]φlm,n,p

= −4 sin2

(
kx∆s

2

)
φlm,n,p. (37.1.21)

The space derivatives in y and z directions can be similarly derived.
The second order time derivative in the wave equation can be similarly approximated, and

it is equal to

∂2

∂t2
φ(r, t)(∆t)2 ≈ φl+1

m,n,p − 2φlm,n,p + φl−1
m,n,p. (37.1.22)

Substituting (37.1.20) into the above, we have the second time derivative being proportional
to

∂2

∂t2
φ(r, t)(∆t)2 ≈ (Al+1 − 2Al +Al−1)eikxm∆s+ikyn∆s+ikzp∆s (37.1.23)

To simplify further, one can assume that

Al+1 = gAl. (37.1.24)

This is commensurate with assuming that

A(t) = A0e
−iωt (37.1.25)



Finite Difference Method, Yee Algorithm 441

where ω can be complex. From the definition of Al, one deduce that g = e−iω∆t. If the
eigenfrequency ω of this system is real, then |g| = 1, and stability ensues.

In other words, our trial solution (37.1.19) is also a time-harmonic signal where ω can be
real or complex. If the finite-difference scheme is unstable for such a signal, it is unstable for
all signals.

Consequently, the time derivative is proportional to

∂2

∂t2
φ(r, t)(∆t)2 ≈ (g − 2 + g−1)φlm,n,p (37.1.26)

We need to find the value of g for which the solution (37.1.20) satisfies (37.1.18). To this end,
one uses (37.1.21) and (37.1.24) in (37.1.18), and repeating (37.1.21), which is for m variable
in the x direction, for the n and p variables in the x and y directions as well, one obtains

(g − 2 + g−1)φlm,n,p = −4

(
∆t

∆s

)2

c2
[
sin2

(
kx∆s

2

)
+ sin2

(
ky∆s

2

)
+ sin2

(
kz∆s

2

)]
φlm,n,p

= −4r2s2φlm,n,p, (37.1.27)

where

r =

(
∆t

∆s

)
c, s2 = sin2

(
kx∆s

2

)
+ sin2

(
ky∆s

2

)
+ sin2

(
kz∆s

2

)
. (37.1.28)

Equation (37.1.27) implies that, for nonzero φlm,n,p,
3

g2 − 2g + 4r2s2g + 1 = 0, (37.1.29)

Solving for g yields

g = (1− 2r2s2)± 2rs
√

(r2s2 − 1) . (37.1.30)

In order for the solution to be stable, it is necessary that |g| ≤ 1.
Lets see what happens in general. When

r2s2 < 1, (37.1.31)

the second term in (37.1.30) is pure imaginary, and

|g|2 = (1− 2r2s2)2 + 4r2s2(1− r2s2) = 1, (37.1.32)

when (37.1.31) is true. Therefore, stability is ensured. Since from (37.1.28), s2 ≤ 3 for all kx,
ky, and kz, from (37.1.31). Also, from (37.1.31), we conclude that

r <
1

s
3For those who are more mathematically inclined, we are solving an eigenvalue problem in disguise. Re-

member that a function is a vector, even after it has been discretized:)
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But we also know that from the definition of s in (37.1.28) that

1

s
≥ 1√

3

In other words, the right-hand side of the above is the lower bound for 1/s. The above two
inequalities will be satisfied if the general condition is

r <
1√
3
<

1

s
, or ∆t <

∆s

c
√

3
. (37.1.33)

after using that r = c∆t/(∆s). The above is the general condition for stability. The above
analysis is for 3 dimensional problems. It is clear from the above analysis that for an n-
dimensional problem where n = 1, 2, 3, then

∆t <
∆s

c
√
n
. (37.1.34)

One may ponder on the physical meaning of this inequality further: but it is only natural
that the time step ∆t has to be bounded from above. Otherwise, one arrives at the ludicrous
notion that the time step can be arbitrarily large thus violating causality.

Moreover, if the grid points of the finite-difference scheme are regarded as a simple cubic
lattice, then the distance ∆s/

√
n is also the distance between the closest lattice planes through

the simple cubic lattice. Notice that the time for the wave to travel between these two lattice
planes is ∆s/(c

√
n ). Consequently, the stability criterion (37.1.34) implies that the time step

∆t has to be less than the shortest travel time for the wave between the lattice planes in
order to satisfy causality. In other words, if the wave is time-stepped ahead of the time on
the right-hand side of (37.1.34), instability ensues.

The above is also known as the CFL (Courant, Friedrichs, and Lewy 1928 [263]) stability
criterion. It could be easily modified for ∆x 6= ∆y 6= ∆z [254].The above analysis implies
that we can pick a larger time step if the space steps are larger. A larger time step will allow
one to complete generating a time-domain response rapidly. However, one cannot arbitrary
make the space step large due to grid-dispersion error, as shall be discussed next.

37.1.4 Grid-Dispersion Error

When a finite-difference scheme is stable, it still may not be accurate to produce good results
due to the errors in the finite-difference approximations. Hence, it is useful to ascertain the
errors in terms of the size of the grid and the time step. An easy error to analyze is the
grid-dispersion error. In a homogeneous, dispersionless medium, all plane waves propagate
with the same phase velocity. However, in the finite-difference approximation, all plane waves
will not propagate at the same phase velocity due to the grid-dispersion error.

As a consequence, a pulse in the time domain, which is a linear superposition of plane
waves with different frequencies, will be distorted if the dispersion introduced by the finite-
difference scheme is intolerable. Therefore, for simplicity, we will analyze the grid-dispersion
error in a homogeneous free space medium.
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To ascertain the grid-dispersion error, we assume a time-harmonic solution, or that Al =
A0e

−iωl∆t in (37.1.20). In this case, the left-hand side of (37.1.27), after letting g = e−iω∆t,
becomes (

e−iω∆t − 2 + e+iω∆t
)
φlm,n,p = −4 sin2

(
ω∆t

2

)
φlm,n,p. (37.1.35)

Then, from (37.1.27), it follows that

sin

(
ω∆t

2

)
= rs, (37.1.36)

where r and s(kx, ky, kz) are given in (37.1.28). Now, (37.1.36) governs the relationship
between ω and kx, ky, and kz in the finite-difference scheme, and hence, is a dispersion
relation for the approximate solution.

The above gives a rather complicated relationship between the frequency ω and the wave
numbers kx, ky, and kz. This is the result of the finite-difference approximation of the scalar
wave equation. As a sanity check, when the space and time discretizations become very small,
we should recover the dispersion relation of homogeneous medium or free space.

But if a medium is homogeneous, it is well known that (37.1.1) has a plane-wave solution
of the type given by (37.1.19) where

ω = c
√
k2
x + k2

y + k2
z = c|k| = ck. (37.1.37)

where k = x̂kx + ŷky + ẑkz is the direction of propagation of the plane wave. Defining the
phase velocity to be ω/k = c, this phase velocity is isotropic, or the same in all directions.
Moreover, it is independent of frequency.

But in (37.1.36), because of the definition of s as given by (37.1.28), the dispersion relation
between ω and k is not isotropic (anisotropic). This implies that plane waves propagating in
different directions will have different phase velocities.

Equation (37.1.36) is the dispersion relation for the approximate solution. It departs from
Equation (37.1.37), the exact dispersion relation for free space, as a consequence of the finite-
difference approximation. This departure gives rise to errors, which are the consequence of
grid dispersion error. For example, when c is a constant, (37.1.37) states that the phase
velocities of plane waves of different wavelengths and directions are the same. However, this
is not true for (37.1.36), as shall be shown.

To elaborate more on the grid dispersion error, we assume that s small. Then (37.1.36),
after using Taylor series expansion, can be written as

ω∆t

2
= sin−1 rs ∼= rs+

r3s3

6
. (37.1.38)

When ∆s is small, using the small argument approximation for the sine function, one obtains
from (37.1.28)

s ' ∆s

2
(k2
x + k2

y + k2
z)1/2 (37.1.39)
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Equation (37.1.38), by taking the higher-order Taylor expansion of (37.1.38), then becomes

ω∆t

2
' r∆s

2
(k2
x + k2

y + k2
z)1/2 [1− δ] (37.1.40)

where (see [36])

δ =
∆s2

24

k4
x + k4

y + k4
z

k2
x + k2

y + k2
z

− r2∆s2

24
(k2
x + k2

y + k2
z) (37.1.41)

From the above, (37.1.40) is almost the same as (37.1.37) save for the factor 1 − δ. Also,
if δ = 0, we retrieve the dispersion relation of the homogeneous free-space medium. So δ
is a measure of the departure of the dispersion relation from that of free space due to our
finite-difference approximation. A soothing observation is that when ∆s� 1, δ is small.

Since k is inversely proportional to wavelength λ, then δ in the correction to the above
equation is proportional to ∆s2/λ2. Therefore, to reduce the grid dispersion error, it is
necessary for δ to be small or to have (

∆s

λ

)2

� 1. (37.1.42)

Or the space discretization ∆s has to be much smaller than the wavelength in question to
mitigate the grid-dispersion error. When this is true, using the fact that r = c∆t/∆s, then
(37.1.40) becomes

ω

c
≈
√
k2
x + k2

y + k2
z . (37.1.43)

which is close to the dispersion relation of free space as indicated in (37.1.37). Furthermore,
∆t must be chosen so that the CFL stability criterion is met. Therefore, the rule of thumb is
to choose about 10 to 20 grid points per wavelength. Also, for a plane wave propagating as
eik·r, an error δk in the vector k gives rise to cumulative error eiδk·r. The larger the distance
traveled, the larger the cumulative phase error, and hence, the grid size must be smaller in
order to arrest such phase error due to the grid dispersion.

37.2 The Yee Algorithm

The Yee algorithm (Yee 1966 [252])4 is a simple algorithm specially designed to solve vec-
tor electromagnetic field problems on a rectilinear grid. The finite-difference time-domain
(FDTD) method (Taflov 1988) when applied to solving electromagnetics problems, usually
uses this method. To derive it, Maxwell’s equations in the time-domain are first written in

4Note that this algorithm, together with the method of moments [264] for solving Maxwell’s equations,
emerge shortly after the advent of the digital computer.
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cartesian coordinates:

−∂Bx
∂t

=
∂Ez
∂y
− ∂Ey

∂z
, (37.2.1)

−∂By
∂t

=
∂Ex
∂z
− ∂Ez

∂x
, (37.2.2)

−∂Bz
∂t

=
∂Ey
∂x
− ∂Ex

∂y
, (37.2.3)

∂Dx

∂t
=
∂Hz

∂y
− ∂Hy

∂z
− Jx, (37.2.4)

∂Dy

∂t
=
∂Hx

∂z
− ∂Hz

∂x
− Jy, (37.2.5)

∂Dz

∂t
=
∂Hy

∂x
− ∂Hx

∂y
− Jz. (37.2.6)

Before proceeding any further, it is prudent to rewrite the differential equation form of
Maxwell’s equations in their integral form. The first equation above can be rewritten as

− ∂

∂t

�
∆S

BxdS =

�
∆C

E · dl (37.2.7)

where ∆S = ∆x∆z. The approximation of this integral form will be applied to the face that
is closest to the observer in Figure 37.2. Hence, one can see that the curl of E is proportional
to the time-derivative of the magnetic flux through the suface enclosed by ∆C, which is ∆S.

One can see this relationship for the other surfaces of the cube in the figure as well: the
electric field is curling around the magnetic flux. For the second half of the above equations,
one can see that the magnetic fields are curling around the electric flux, but on a staggered
grid. These two staggered grids are intertwined with respect to each other. This is the spirit
with which the Yee algorithm is written. He was apparently motivated by fluid dynamics
when he did the work.

Figure 37.2: The assignment of fields on a grid in the Yee algorithm [252]. This algorithm
is vastly popular for electromagnetic simulations [254].
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After denoting f(m∆x, n∆y, p∆z, l∆t) = f lm,n,p, a more compact notation, and replacing
derivatives with central finite-differences in accordance with Figure 37.2, (37.2.1) becomes

1

∆t

[
B
l+ 1

2

x,m,n+ 1
2 ,p+

1
2

−Bl−
1
2

x,m,n+ 1
2 ,p+

1
2

]
=

1

∆z

[
Ely,m,n+ 1

2 ,p+1 − E
l
y,m,n+ 1

2 ,p

]
− 1

∆y

[
Elz,m,n+1,p+ 1

2
− Elz,m,n,p+ 1

2

]
. (37.2.8)

where the above formula is evaluated at t = l∆t. Moreover, the above can be repeated for
(37.2.2) and (37.2.3). Notice that in Figure 37.2, the electric field is always assigned to the
edge center of a cube, whereas the magnetic field is always assigned to the face center of a
cube.5

In fact, after multiplying (37.2.8) by ∆z∆y, (37.2.8) is also the approximation of the
integral forms of Maxwell’s equations when applied at a face of a cube. By doing so, the
left-hand side of (37.2.8), by (37.2.7), becomes

(∆y∆z/∆t)
[
B
l+ 1

2

x,m,n+ 1
2 ,p+

1
2

−Bl−
1
2

x,m,n+ 1
2 ,p+

1
2

]
, (37.2.9)

which is the time variation of the total flux through an elemental area ∆y∆z. Moreover, by
summing this flux on the six faces of the cube shown in Figure 37.2, and using the right-
hand side of (37.2.8) and its equivalence, it can be shown that the magnetic flux adds up to
zero. Hence, ∂

∂t∇ · B = 0 condition is satisfied within the numerical approximations of Yee
algorithm. The above shows that if the initial value implies that ∇ · B = 0, the algorithm
will preserve this condition. So even though we are solving Faraday’s law, Gauss’ law is also
enforced if the cumulative numerical error is kept small. This is important in maintaining
the stability of the numerical algorithm [266].

Furthermore, a similar approximation of (37.2.4) leads to

1
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2 ,n,p
−Dl−1
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−H l− 1
2

y,m+ 1
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1
2

]
− J l−

1
2

x,m+ 1
2 ,n,p

. (37.2.10)

Also, similar approximations apply for (37.2.5) and (37.2.6). In addition, the above has an
interpretation similar to (37.2.8) if one thinks in terms of a cube that is shifted by half a grid
point in each direction. Hence, the approximations of (37.2.4) to (37.2.6) are consistent with
the approximation of ∂

∂t∇ ·D = −∇ · J. This manner of alternatively solving for the B and
D fields in tandem while the fields are placed on a staggered grid is also called the leap-frog
scheme.

In the above, D = εE and B = µH. Since the magnetic field and the electric field are
assigned on staggered grids, µ and ε may have to be assigned on staggered grids. This does
not usually lead to serious problems if the grid size is small. Alternatively, (37.1.16) and
(37.1.17) can be used to remove this problem, and to reduce storage.

5This algorithm is intimately related to differential forms which has given rise to the area of discrete
exterior calculus [265].
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By eliminating the E or the H field from the Yee algorithm, it can be shown that the Yee
algorithm is equivalent to finite differencing the vector wave equation directly. Hence, the
Yee algorithm is also constrained by the CFL stability criterion. [261]

The following figures show some results of FDTD simulations. Because the answers are
in the time-domain, beautiful animations of the fields are also available online:

https://www.remcom.com/xfdtd-3d-em-simulation-software

Figure 37.3: The 2D FDTD simulation of complicated optical waveguides. Such simula-
tions can be done from static to optical frequencies (courtesy of Mathworks).

Figure 37.4: FDTD simulation of human head in a squirrel cage of an MRI (magnetic
resonance imaging) system. A static magnetic field biases the spins in the human body.
Then an RF field is used to tilt the spins causing them to precess. Their precession
gives rise to electromagnetic radiation that can be measured by the squirrel cage coils
(courtesy of REMCOM).
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37.2.1 Finite-Difference Frequency Domain Method

Unlike electrical engineering, in many fields, nonlinear problems are prevalent. But when
we have a linear time-invariant problem, it is simpler to solve the problem in the frequency
domain. This is analogous to perform a time Fourier transform of the pertinent linear equa-
tions.

Consequently, one can write (37.2.1) to (37.2.6) in the frequency domain to remove the
time derivatives. Then one can apply the finite difference approximation to the space deriva-
tives using the Yee grid. As a result, in replacement of Maxwell’s equations, one arrives at a
matrix equation

A · x = b (37.2.11)

where x is an unknown vector containing E and H fields, and b is a source vector that
drives the system containing J. Due to the near-neighbor interactions of the fields on the Yee
grid, the matrix A is highly sparse and contains O(N) non-zero elements. When an iterative
method is used to solve the above equation, the major cost is in performing a matrix-vector
product A · x. However, in practice, the matrix A is never generated nor stored making this
a matrix-free method. Because of the simplicity of the Yee algorithm, a code can be easily
written to produce the action of A on x or ·x.

37.3 Absorbing Boundary Conditions

It will not be complete to close this lecture without mentioning absorbing boundary condi-
tions. As computer has finite memory, space of infinitely large extent cannot be simulated
with finite computer memory. Hence, it is important to design absorbing boundary condi-
tions at the walls of the simulation domain or box, so that waves impinging on them are not
reflected. This mimicks the physics of an infinitely large box.

This is analogous to experments in microwave engineering. In order to perform experi-
ments in an infinite space, such experiments are usually done in an anechoic (non-echoing or
non-reflecting) chamber. An anechoic chamber has its walls padded with absorbing materials
or microwave absorbers so as to minimize the reflections off its walls (see Figure 37.5). Figure
37.6 shows an acoustic equivalence of anechoic chamber.
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Figure 37.5: An anechoic chamber for radio frequency. In such an electromagnetically
quiet chamber, interference from other RF equipment is minimized (courtesy of Pana-
sonic).

Figure 37.6: An acoustic anechoic chamber. In such a chamber, there is no reflection
from the wall of the chamber; even the breast-feeding sound of a baby can be heard
clearly (courtesy of AGH University, Poland).

By the same token, in order to simulate numerically an infinitely large box with a finite-
size box, absorbing boundary conditions (ABCs) are designed at its walls. The simplest of
such ABCs is the impedance boundary condition. (A transmission line terminated with an
impedance reflects less than one terminated with an open or a short circuit.) Another simple
ABC is to mimick the Sommerfeld radiation condition (much of this is reviewed in [36]).6

A recently invented ABC is the perfectly matched layers (PML) [267]. Also, another
similar ABC is the stretched coordinates PML [268]. Figure 37.7 shows simulation results
with and without stretched coordinates PMLs on the walls of the simulation domain [269].

6ABCs are beyond the scope of these lecture notes.
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Figure 37.7: Simulation of a source on top of a half-space (left) without stretched coor-
dinates PML ABC; and (right) with stretched coordinats PML ABC [269].


